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Abstract

The limits of a class of primal and dual solution trajectories associated with the

Sequential Unconstrained Minimization Technique (SUMT) based on the loga-

rithmic barrier function are investigated for convex programming problems in the

presence of multiple optima and degeneracy conditions. For linear programming

problems, such limits can be characterized as analytic centers of, loosely speaking,

optimality regions. Of interest here are generalizations of those results.

A class of convex programming problems, identified by what is termed the “rank-

integrity property”, is introduced for which primal trajectory limits can be char-

acterized in analogy to the linear case and without differentiability conditions.

This class of problems contains linear and convex quadratic programming prob-

lems as strict subsets. Similar, albeit more restricted, results are obtained for dual

trajectories defined in the differentiable case.

Keywords: analytic center, barrier function, convex programming, degeneracy,

interior point method, optimization, rank-integrity, SUMT, trajectory.

1. Introduction

Consider the following
“primal

”

convex programming problem defined on a convex

domain C C iU1

,

, . Minimize f{x) subject to

gi(x) > 0, for i = 1 ,...,m, x G Rn
:

where the objective function f(x) is continuous and convex on (7, and the con-

straint functions gz (x), i = 1 ,...,m, are continuous and concave on C.

If an optimal solution x* exists, let t* = f(x*) denote the minimum value of the

programming problem. The sets

XF = {x: g,(x) > 0, i = 1, .... m) C C, X* = {x : f(x) =f, xe XF
} C XF

of feasible and optimal solution will here be referred to as “feasibility region

”

and

“optimality region ”, respectively. Both are closed convex sets. We will restrict

our analysis to convex programming problems for which

(1.2) the optimality region X* is nonempty, bounded and, consequently,

compact,
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and we are particularly interested in those cases in which the optimality region

contains more than one point.

An important consequence of the boundedness of the optimality region is that

(see Fiacco and McCormick [8], Theorem 24)(1.3)

all level sets {x £ XF
: f(x) < t} are bounded.

Once and for all, we will require the standard

(1.4)

Constraint qualification of Slater [20]: There exists a point x £ Rn

such that for all constraints gfix) > 0, i = 1,

gfix) > 0.

That condition guarantees that the interior intXF of the feasibility region is

nonempty, and that none of the constraint functions vanishes identically on XF
.

The Slater constraint qualification is clearly necessary and sufficient for the defi-

nition of the “logarithmic barrier function
77

m
(1.5) 5Zln[$i(x)],

1=1

which tends to -oo as r approaches the boundary of the feasibility region XF
. Use

of the logarithmic barrier function for perturbing the objective function in order to

approximate optimal solutions has been suggested early on by Frisch [9] . Following

the general SUMT approach, a family of (logarithmic) barrier perturbations are

introduced on intXF :

(
1 .6

)
L(x,r) = f(x) — r Y r > 0,

These functions are clearly continuous and convex in the variable x for each spe-

cific parameter value r. They grow infinitely large close to the boundary of the

feasibility region XF
. Any minimizer

x(r) := argminxL(x :
r)

of such a barrier perturbation is therefore an unconstrained minimizer. The idea is

to reduce the perturbation successively in order for the unconstrained minimizers
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x(r) to converge towards a - constrained - optimal solution x* E X *.

It is an important result that those minimizers always exist - even if the feasiblity

region XF
is not bounded -

,
provided the optimality region X

*

is bounded

(assumption (1.2)). It then follows that the minimizers accumulate towards the

optimality region. Indeed the following statement (see Fiacco and McCormick

[8], Theorem 25) - which extends also to classes of barrier functions other than

the logarithmic ones - is the basis of barrier-driven Sequential Unconstrained

Minimization Techniques (SUMT) pioneered by Fiacco and McCormick [5], [6], [7].

(1.7) If the optimality region X* of the convex programming problem (1.1)

is nonempty and bounded, then

(i) each barrier perturbation L(x,r ): r > 0 has a minimizer x(r);

(ii) the values of minimizers x(r) converge, that is,

f[x(r)] —> t* as r —> 0

holds, where x(r) is any minimizer of the barrier perturbation L(x,r);

(iii) r < r implies f[x(r)] < f[x(r)\ for any minimizers x(r) and

x(f), respectively.

Under very general conditions, the minimizers x(r) will be unique. Then those

minimizers describe a continuous

(1.8) “(primal) trajectory ” x = x(r), r > 0.

Indeed, any sequence of minimizers x(rf),ri —> r0 > 0, must have an accumu-

lation point x by (1.7,iii) and (1.3). Since L(x,r) is continuous in both x and

r, L[x(ri),ri\ < L[z(r0 ), r*] implies in the limit L(x,r0 )
< L[x(r0 ),

r0 ]. As the

minimizer x (r0 )
is unique, x = x(r0 ). Thus x (r*) converges towards x(r0 ),

whence

the trajectory x = x(r) is continuous at any r — r0 > 0.

The trajectory x = x(r) and its relatives have received considerable attention

McCormick [13], [14], Anstreicher [2], Bayer and Lagarias [3], [4]. An algorithmic

convergence theory based on the concept of
“
self-concordan

f

barrier functions

has been developed by Nesterov and Nemirovskii [16], [17]. The same trajectories

generally arise for the method of centers proposed originally by Huard [10], [11],

investigated later by Sonnevend [21] and, for the case of linear programming prob-

lems, by Renegar [18], [19]. The projective interior point method proposed and

proved to be of polynomial complexity by Karmarkar [12] is based on related con-

cepts.
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If there is a unique optimal solution x*, that is, if the optimality region X* con-

sists of a single point, then the primal trajectory converges to x* in view of (1.7).

But what happens if there are multiple optimal points? Does a limit exist, and if

so, how can that particular optimal point be characterized?

In the linear programming case, the feasibility region XF
is a closed convex poly-

hedron, and the optimality region X* is either a single vertex or, in the case of

multiple optimal solutions, an entire exposed set or
(
“face”) of that polyhedron

such as an edge or a higher dimensional analogue (see for instance Stoer and Witz-

gall [22]). Megiddo [15] observed and, Adler and Monteiro [1], Witzgall, Boggs,

and Domich [23]) proved, in more general settings, that the minimizers x(r) con-

verge towards the “analytic center” of the optimal face. One goal of this work is

to investigate generalizations of this result.

We call a convex programming problem (1.1) “differentiable” if the functions f(x)

and gi(x),i = 1 ...to, are differentiable in the interior of their definition region C,

and if the feasibility region is contained in that interior:

XF C intc.

For such differentiable convex programming problems it is possible to define a

dual trajectory associated with the primal trajectory x = x(r). Indeed, in view of

the convexity and differentiablility of the logarithmic barrier perturbation L{x, r),

vanishing gradients are necessary and sufficient to characterize its minimizers x(r).

Considering gradients as column vectors, we may write that optimality condition

as follows:
TTL

(1.9) V/[x(r)
]
= V&[s(r)] .

i= i 9nx \
r

)\

Here the vectors u(r) with nonnegative components

(
1 - 10

)
U;

(
r
)
= -tAtt, i =

9t[x {
r

)\

are usually unique and, if so, define a

“dual trajectory ” u — u(r)

which shadows the primal trajectory.

This trajectory relates to the “Wolfe-dualization” [24] of the convex programming

problem (1.1):
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(1.11) Maximize f{x) — Y%Li 9i{x )
ui subject to

V/(z) -
i=i

'LL — (u-i

,

>

0,

0, x E C.

The combination [i(r),w(r)] constitutes for every parameter r > 0 a feasible solu-

tion of the Wolfe-dualization (compare [7]). Furthermore, consider the - necessary

and sufficient - KKT optimality condition for an optimal solution x* of the primal

convex programming problem. It requires the existence of an m— vector u* > 0 of

KKT multipliers such that

v/(x*) = £V»(**K,

while satisfying the complementary slackness condition

771

Y,giO’K = o.

7— 1

Note that those conditions also imply that (x*,u*) is an optimal solution to the

Wolfe-dualized problem (1.11) and, conversely, that if (x*,u*) is an optimal solu-

tion, then x* is an optimal solution of the primal problem and u* is a corresponding

vector of KKT multipliers.

For the unique limit x

*

E X * of the primal trajectory x = x(r) - should it exist

-
,
we may consider the convex set

(1.12) U* = U*(x *) = {u6 Rm : (x*,u) Wolfe dual optimal (1.11)}

as a “ dual optimality region”

.

Indeed, for linear programming problems, the Wolfe-dualization creates the famil-

iar dual linear programming problem - with the primal variables dropping out.

The set U* then becomes the optimality region of that dual linear program, and

the dual trajectory can be interpreted as a SUMT trajectory of the dual linear

programming problem converging to the analytic center of the dual optimality

region. We will examine generalizations of this dual result, too.

The material will be presented as follows: In Section 2, following the Introduction,

analytic centers of primal optimality regions are introduced, followed by a section
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of examples and counterexamples. In Section 4, rank-integrity is defined and key

properties derived. The first theorem characterizes limits of the primal trajectory

under rank-integrity. It will be proved in Section 5. The last four sections intro-

duce analytic centers of dual optimality regions, and prove the second theorem

about conditions under which those analytic centers are limits of dual trajectories.

2. Analytic Centers of the Primal Optimality Region

We are particularly interested in the case in which the optimality region X* of

the convex programming problem (1.1) consists of more than one point, and we

wish to establish a concept of “analytic center of the optimality region”.

The classic ([10], [11], [21]) definition of the analytic center of a system of con-

straints

(2.1) gi(x) >0, i = l, ...,m,

is as maximizer of the product of the constraint functions or, equivalently if the

interior intXF of the feasibility region is not empty (see 1.4), as maximizer of the

logarithmic barrier function (1.5),

= argmaxx ^ln[^(x)]
\i=l

Such analytic centers exist if the feasibilty region XF
is bounded.

Note that this definition pertains to systems of constraints and not to their so-

lution sets: Different systems of constraints with identical solution sets may give

rise to different analytic centers, each maximizing a different sum of constraint

logarithms. Adding a redundant constraint is a case in point.

In the linear programming case, a system of constraints which characterizes the

optimality region can be obtained in canonical fashion from the constraints of the

given linear programming problem: turn the inequalities which are “universally

binding ”, that is, satisfied as equalities for every optimal solution, into equations.

The resulting system of linear inequalities and equations may not have interior

solutions. As a result, the definition of analytic centers needs a slight generaliza-

tion: only those constraints that are not universally binding are included in the

sum of constraint logarithms to be maximized.

In our more general case of convex programming, there appears to be no natural

argmax
3

^z=l
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system of optimality constraints that derives from the feasibility constraints, and

leads to a direct canonical characterization of the analytic center of optimality

regions. Furthermore, the optimality region of programming problems that are

linear is always an exposed set of the feasibility region. For nonlinear convex

programming problems, the optimality region may not even be an extreme set.

Returning to the linear programming case, the analytic center of a bounded op-

timality region can also be characterized as the maximizer over the optimality

region X * of a logarithmic barrier function again constructed from those feasi-

bility constraints which are not universally binding at optimality. That alternate

definition differs conceptionally from the earlier one in that the analytic center is

defined with respect to the optimality region X* as a set rather than a character-

izing system of constraints. It is this characterization of the analytic center of the

optimality region that extends naturally to convex programming problems. Let

thus

(2.2) Z = {1 < i < m : gt (x) = 0 for all x £ X*},

denote the set of the indices of constraints that are universally binding at optimal

solutions of problem (1.1).

The concept of universally binding constraints is not as compelling here as for lin-

ear programming problems. Indeed, any system of constraints (2.1) can - in many
ways - be replaced by a single constraint g(x) > 0 with a single concave func-

tion g(x ), and this single sufficient constraint will be universally binding, unless

there are optimal solutions in the interior of the fesibility region XF
. By contrast,

linear programming problems with bounded optimality regions will always have

constraints that are not universally binding. We denote the index set associated

with constraints that are not universally binding by

(2.3) N = {1 < z < m : i ^ Z},

and define an “
analytic center of the (primal) optimality region” by the following

optimization problem:

(2.4) Maximize JJ gi(x) subject to x £ X *

.

i£N

If N = 0, then we consider any x £ X* an analytic center of the optimality region.

This convention may lead to multiple analytic centers. We will give an example

later where the above maximization problem does not define a unique analytic

center even if N ^ 0. Note that by that definition
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(2.5) analytic centers x* form a nonempty convex set and satisfy

gi(x*) > 0 for i E N.

Proof. At least one analytic center x* exists since X* is supposed to be nonempty

and bounded by assumption (1.2).

If the index set N is empty, nothing more needs to be shown. Otherwise, we

observe that the optimality region X* contains a point x with gi(x) > 0 for all

i E N. Indeed, let i be some index in N. If gi(x) = 0 for every x E X*
,
then

i E Z by definition. Thus there exists x E X* with gi(x^) > 0. Define

where \N\ denotes the cardinality N. Since X* is convex, x E X* and gi(x) > 0

for all i E N. The objective function of problem (2.4) assumes a positive value

for x and, therefore, for x*. Thus gi(x*) > 0 for i E N.

This observation also makes it possible to pass to the logarithm of the objective

function of problem (2.4), that is, the corresponding sum of logarithms

Y MftW],
ieN

without affecting the definition of analytic centers. That function is concave,

whence the set of maximizers convex.

We observe, that

(2.6) in the absence of constraints that are universally binding at optimal-

ity, that is, if Z = 0, every accumulation point of minimizers x(r)

of the barrier perturbation L(x,r) is an analytic center (2-4) of the

optimality region.

Proof. Because all constraint indices i are in N
,
there exists by (2.5) an analytic

center x* with gz (x*) > 0,2 = that is, x* E intXF . Thus L(x*,r) is

defined for r > 0, and

m ttl

L[x(r),r] = f[x(r)] - r ln(#[z(r)]) < f(x*) - r]T ln[#(z*] = L(x*,r).

i=i i=\
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Since f(x*) = t*

,

0 < f[x(r)] - t* < r £ ln(si[x(r)]) - ln[ffi(a:*)]

<i=

1

i—l

and
771 771

XI 5i[a:(r-)] > I[s;(x*).
1=1 1=1

Let x G X* be an accumulation point of x[r) as r —> 0. Thenmm mm
iis.M 7')] - n ^i(^) > iis.(z*) - n*(*) ^ °-

Z=1 Z= 1 Z= 1 Z= 1

The left hand side of the above expression converges to zero by continuity. Thus

771 771

n&o) = iis'(x*)>

z= 1 z=

1

which was to be shown.

The absence of universally binding constraints at optimality is, of course, equiv-

alent to the existence of optimal solutions in interior of the feasible region. Also

if, in this case, the analytic center x* of the optimality region is unique, then

(2.6) implies that it is the limit of the primal trajectory x = x(r), - which is the

behavior we wish to establish in general. In the presence of universally binding

constraints, however, it may not hold, as some of the examples in the following

section illustrate.

3. Examples and Counterexamples for the Primal Limit

Conjecture

In this section we examine analytic centers of some convex programming problems

in order to illustrate the issues raised previously. Consider the linear programming

problem for x = (sq, x 2 )

(3.1)

Minimize — 2x 2 — x3

9i{?)

92{x)

93{x)

9*(x)

9s{x)

subject to

Xi > 0
,

x 2 > 0,

x3 > 0,

2 — xi — 2x 2 — x 3 > 0,

4 + 3xi — 4x 2 — 2x 3 > 0 .

9



The feasible set XF
is a polytope, and the optimality region X* is an edge of

that polytope, characterized by g\{x) = #4 (
2

)
= gs(x) = 0. Thus both kinds

of degeneracies are present at optimality: optimal solutions are not unique, and

neither are the KKT multipliers due to the linear dependence of the above three

constraints gt (x),i £ Z = {1,4,5}. Since this convex programming problem is

differentiable, the optimality condition (1.9) can be applied to characterize primal

trajectory points x = x(r). The gradient

v/O) =
0

-2
-1

can be expressed in the form:

1
^ r

0
1 r (

0
^ r (

- 1
\

0 — + 1 — + 0 h -2

0 }
Xi

0 J
x 2

1

1

)
x3 -1 /

2 — xi — 2x 2 — x3 4 + 3xi — 4z 2 - 2z3

This condition yields the following expressions for the primal trajectory:

2 + 5r — \/4 — 4r + 25r 2
4(v/19 + l)r

x\ (r) =
\/l9 — 1 3(2 + 5r + y/A - 4r + 25r 2

)

/ \ _ 2 - 5r + V4 - 4r + 25r2 2 - 5r + y/i - 4r + 25r 2

x2{r )
-

o ,
x3{r) =

8

Clearly,

as r 0.

x:(r) -* 0, x 2 (r

)

-» i x3 (r) -»

These limits also describe the solution of the

1,

optimization problem

(3.2)

Maximize x 2x 3 subject to

gi(x) xj = 0
,

92 (
2

)
= x 2 > 0

,

93{x) = x 3 >0,

g4 (x) = 2- Xl -2x 2 -x3 = 0,

g5 (x) = 4 + 3^! — 4z 2 — 2x3 = 0,

which characterizes the analytic center of the optimality region. To determine
that maximum, the reader may choose to substitute x3 — 2 — 2x 2 and to find the
unconstrained maximum of 2a; 2 (l — x 2 ).

10



In trying to extend this result to the general convex case, however, difficulties are

encountered. Consider the functions

p(zi,z 2 )
= i

- l) 2 + xj, q(xu x 2 )
= y(zi + l) 2 + x\,

and

(3.3) f(xi,x 2 )
= p(x 1 ,x 2 ) + q(xi, x 2 )

~ 2.

Both p(xi,x 2 )
and q(xi,x 2 )

are convex functions describing circular cones with

apex at the points

respectively. The functions are linear on each ray emanating from their apex.

They are strictly convex on every line not containing the apex. It follows that

the function f(xi,x 2 )
is piecewise linear on the z-axis, and is strictly convex

everywhere else. It assumes a minimum of zero on the interval spanned by the

two apexes.

In the previous section, we promised to provide an example of analytic centers

being not unique even if there are nonuniversally binding constraints, N ^ 0,

and if the SUMT minimizers x{r) are unique. To this end consider the convex

programming problem

Minimize f(x i,x 2 )
subject to

9i(x) = x 2 >0
g2 (x) = 1 - x 2 > 0

thus has the bounded optimality region X* = {(cci, x 2 )

T
:
— 1 < x 1 < +1, x 2 = 0}

with N = {2}. The corresponding function — ln(l — x 2 ),
which is supposed to

characterize the analytic center of the optimality region X*, is constant there.

Thus every optimal solution is an analytic center. On the other hand, the objective

function f(x i, x 2 )
is strictly convex above the x-axis. The resulting barrier pertur-

bations L(x,r) are, therefore, strictly convex in the interior of the feasible region,

the primal trajectory is well-defined, and has the unique limit x* = (0,0)
T

. The
objective function f(xi,z 2 )

is not differentiable at the apexes
(+ 1, 0)

T
, (
— 1, 0)

T
,

the focal points of the ellipses which describe its level sets. But the function

/(x l5 x 2 )

2
is differentiable and, subject to the above constraints, shows the same

abnormal behavior.

The following examples show that, even if a unique analytic center of the optimal-

ity region exists, it may not be the limit of a well-defined primal trajectory. First,
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consider the convex programming problem defined on C — Rq = {(x\,x 2 )

T
•

xi,x 2 > 0 }.

(3.4)

Minimize x 2

9i(x)

92{x)

9s{x)

94{x)

subject to

X\ > 0
,

2 — X\ > 0,

x 2 > 0,

yJX\X 2 > 0 .

All barrier perturbations are differentiable in the interior intXF of the feasibility

region. So the optimality condition (1.9) for minimizing a barrier perturbation

L(x,r) applies:

0

1

T

*JX\X 2

For the point (x 1 (r), x 2 (r))
T

to lie on the primal trajectory then requires that

1

Xi
+

2 — X\ 2x\
= o, = 1,

It follows that X\ (r) = 6/5, x 2 (r) = 3r/2, and therefore limr_o ^i(r) = 6/5. On
the other hand, N = {1,2} and so the center (xl,xl)

T
of the optimality region

is characterized by x*2 — 0 and (see (2.4)) by the following maximization problem

for X\.

Maximize Xi{2 — x^) subject to 0 < X\ < 2.

The solution is clearly x\ = 1 ^ 6/5. The center of the optimality region thus

differs from the limit of the primal trajectory for this example. Note, that the

concave constraint functions have vertical tangents at boundary points of the

feasible region, that is, for x 1 = 0 and x 2 = 0. They are therefore not differentiable

at those points.

An even stronger counterexample to the conjecture that a unique analytic center

is the limit of the primal trajectory x = x(r), refers back to the function f(x i, x 2 )

defined above (3.3).

(3.5)

Minimize f(xi,x 2 )
subject to

gY (x) = x 1 > 0

g2 (x) = x 2 >0.

12



The feasibility region contains interior points, and the optimality region X* =
{(xi,X 2 )

t
: — 1 < < +1, x 2 = 0} is bounded. Again, the barrier perturbation,

L(x 1: x 2 ,r) = yj{x i
- l) 2 + x\ + y(x a + l) 2 + x\ - r[ln(x 1 ) + ln(x 2 )], r > 0,

is differentiable in the positive orthant R^ =. {(xi,x 2 )

t
: xi,x 2 > 0}. The

necessary and sufficient optimality condition for the SUMT minimizer

x (r) =

thus is

(3.6)

(3.7)

X\ — 1

+

x i = Xi(r)

x 2 = x 2 (r)

Xi + 1

\J(
X i ~ l

)
2 + x 2 \J(

X i T l
)

2 T

X 2
,

^2

— 7
*

s)

+ r|T)
X 2 Jyj(x i

- l
)
2 + x| + l

)

2 + ^2

For the following calculations, we abbreviate:

:= ^/(x! - l) 2 + x\ = \jx\ + x\ + \ -2x y

V+ := \/(zi + l) 2 + x^ = yjxl + x% + 1 + 2x : .

The optimality condition is a system of linear equations for 1 / and 1 />/+ with

solutions

1 r / 1 xi + 1

2 Vxi

1

x‘'2 ) V+

or, since Xi and x 2 are both positive,

r
(
x i
— l

2

~~
x; Xi

-r(x
2
— x 2 — Xi)\/—2xix

2 =

2xix
2 = —r(x

2 — x
2
— Xi)V-f,

and

(Xg — X
2 — Xi)v^ = (x? - X* - xOV+.

Squaring both sides of the above equation yields the necessary conditition

(xg — x
2 — Xi)

2
(x

2 + x
2 + 1 — 2xi) = (x

2 — x\ — xx)
2
(x

2
-f x\ + 1 + 2xi).

13



We collect by common factors {x\ + x\ + 1) and 2xi, finding, in view of

(x\ — x\ — x a )

2 —
(
x\ — x\ — xj)

2 = 4x(x 2 — x\)

(x
2 - x

2 - Xi)
2
+ (a? - x 2 - x x )

2 = 2[(x
2 - X

2

)

2 + X
2

],

that

4xi(x
2 — x

2
)(x

2 + z 2 -f 1) = 2[(x
2 — x

2

)

2 + x
2
]2x x .

Dividing by 4xi > 0, yields

(x
2 -x 2

)(x? + x
2 + l) = (x

2 -x 2

)

2 + x
2

.

or, expanded,

2x
2
x

2 — 2xl — ~
0-

Dividing by x 2 > 0, finally leads to the following necessary optimality condition

for the SUMT minimizers in this example:

2z 1 (r)
2 - 2z 2 (r)

2 -1=0.

This is the equation of the arc of a hyperbola with asymptote X\ = x 2 . Also,

= V2
4x 2 — 2

Xi = V2
( 4x1

4x1 - 1J
A

' \4x\ + 1

By continuity, and because x 2 (r) —> 0 as r —> 0,

Xl

Xi (r)

x 2 (r) (

11f )
as r 0.

This point, however, differs from the unique analytic center of the optimality

region,

x =

Indeed, N = { 1} and

J[gl {x 1 ,x 2 )
= xi.

ieN
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the maximum of which over the interval {(xi,x 2 )

t
: — 1 < £1 < +1, x 2 = 0} is

clearly assumed for x\ — 1.

Again we note, that the function f(xi,x 2 ) (3.3) is not differentiable at the points

(+ 1, 0)
T

, (
—

1, 0)
T

,
but its square, f(x\,x 2 )

2
is differentiable at these points and

everywhere in XF
. After dividing by 2f(xi,x 2 ) > 0, the optimality condition for

SUMT minimizers then takes the form (compare (3.6)):

X\ — 1 X\ + 1

\J{x 1
- l

)

2
-f ^(cci + l

)

2 +

^2
!

^2

\/(^i
- l

)

2 + A yj{x\ + l
)

2 + A

r

2f(x 1 ,x 2 )

r

2/(xi,x 2 )

This shows that the squared function gives rise to same primal trajectory as the

original function, only the dependence on the parameter r is affected. It follows

that the discrepancy between trajectory limit and analytic center may obtain also

for fully differentiable objective functions and linear constraints.

4. Rank-Integrity

As the examples in the previous section show, the characterization of the limit of

the primal trajectory x = x(r) as an analytic center requires a restriction of the

class of programming problems (1.1) to be considered. We proceed to define such

a restriction.

We say that a convex or concave function c(x) on Rn has

(4.1)
“
rank-integrity

”

if for any line L and any line segment S = [x,x] C L of positive length, the

following holds:

(4.2) If the function c{x) is constant on the segment S
,
then it is constant

on the entire line L and on any line parallel to L.

We proceed to characterize functions with rank-integrity. We call any function of

a single real variable 6

(4.3) constant-free
”



if there is no interval 9\ < 9 < 02 on which the function is constant. We then

call a function (J(s),s E Rn
,

“
constant-free” if its 1-dimensional restrictions are

constant-free (4.3).

Constant functions as well as convex (concave) constant-free functions - such

as strictly convex (concave) functions - have rank-integrity. In what follows,

we will provide more detailed characterizations of rank-integrity without always

mentioning these trivial cases. We will also restrict ourselves to discussing the

convex case since the concave case is analogous.

(4.4) A convex function c(x) on Rn has rank-integrity if and only if it is

direct sum of a constant function and a constant-free convex function.

In other words, a convex function c(x) has rank-integrity if and only

if it is of the form

c(x) = Q(Ax ),

where A denotes an l x n-matrix, and Q(s), s E Rl

is convex and

constant-free.

Proof. Suppose the convex function c(x) has rank-integrity and let M be the set of

all directions w in which c(x) is constant along a line. By the definition of rank-

integrity, those directions indicate constant behavior regardless of the starting

point. Thus it follows immediately that the set M is a linear subspace of Rn
.

This subspace may be described as the null-space of a matrix A of full rank:

M = {w : Aw = 0}. Let M1 denote the orthogonal complement of M, and split

any x E Rn
into its two components in those orthogonal subspaces: x — w + x.

Then

c(x) = c(w -f- x) = c[x) — c[A
T(AAt )~ 1

Ax] = Q(Ax).

We have to show that the convex function

Q{s) = c^iAAfy's]

is constant-free. Assume to the contrary that s^s define a constant line segment

of (?(.s). Then x = AT(AAT
)

-1
5 and x — AT(AAT)~ 1

s are points in Rn with s =
Ax and s = Ax. It follows that the points x

,
x bracket a constant line segment S

for c(z). By rank-integrity, c(x) is then constant everywhere in direction w = x— x
,

whch thus must lie in the null-space Aw = Ax — Ax = s — s — 0. This contradicts

the assumption s^fs. The convex function Q(s) is therefore const ant -free.

16



Conversely, suppose c(x) = Q(Ax
)
with (J(s) convex and constant-free. Suppose

further that points x^x are endpoints of a line segment 5 on which c(x) has

constant values. For 0 < 6 < 1,

c[xA 9(x — x)\ = Q[Ax + 9(Ax — Ax)\ — <5[s + 0(s — 5 )],

where s = Ax, s = Ax. If s s, the function (J($) would be constant on the line

segment AS C Rl

in violation of the assumption that Q(s) is constant-free. Thus

s = s. This implies Aw = 0 for the direction w = x — x, and

c(x + 6w) — Q(Ax A OAw
) = Q(Ax) - c[x

)

for any x and 9.

Linear and convex quadratic functions c(x) have rank-integrity. Indeed, those

functions belong obviously to a more restricted class of functions with rank-

integrity characterized by the property:

(4.5) If the function c[x) is linear on a segment S, then it is linear on any

line L parallel to S

.

It follows again that each such function is the direct sum of a linear function and

a strictly convex function, that is, it is of the form

c(x) = a -f a
T
x + Q(Ax)

with A an / x 72,-matrix and Q(s),.s E Rl

,
a strictly convex function. Note that

functions of the form

c(x) = a + a
T
x A Qi(Aix) + ... + Q k(Akx),

with strictly convex functions Qi,...,Qk, are also of that form since additivity

holds: Q\{A 1x) + Qi(A2x) = Q(Ax) with Q = Q x © Q 2 the - strictly convex -

direct sum of two strictly convex functions and

We will now examine implications of rank-integrity for the objective and constraint

functions of convex programming problems. For convenience, we say the convex

programming problem (1.1) has
“
rank-integrity” if the functions

f{x ), gi{x),i = 1, •••,77i,

17



have rank-integrity (4.1). For the remainder of this section, we will assume that

this property holds. We first note that, in this case,
(4.6)

the barrier perturbations L(x,r),r > 0, have unique minimizers x{r).

Proof. Assume L(x,r) has two minimizers x(r) ^ x(r). Because of the convexity

of L(x,r), the two minimizers span a line segment S on which L(x,r) = f(x) —
r JLi ln<7i(z), r > 0 is constant. In general, if the sum of convex functions is linear

and, in particular, constant, then each individual function must be linear. Thus

In gi(x) will be linear on line segment 5.

The following general property of the logarithm function is readily established by

comparing derivatives.

(4.7) If the logarithm of a positive function 7(6) is linear in 6 ,
then it is

constant in 6.

The linearity of \ngi(x) on line segment S thus implies that gi(x) is constant on S.

By rank-integrity, every constraint function must then be constant and positive

on the entire line L D S. That line is therefore contained in the feasiblity region

XF
.

It follows that also the objective function f(x) = L(x,r) Pr^ln gi(x) is constant

on line segment 5, whence on the entire line L, again by rank-integrity. Thus f(x)

would have an unbounded level set in XF
,
contradicting (1.3). (If the objective

function f(x) belongs to the special class (4.5) of functions with rank-integrity

such as linear and convex quadratic functions, then the barrier perturbations

L(x,r) are actually strictly convex in x.)

Recall that there need not be any constraints gz (x) which are not universally

binding at the optimality region; in other words, the index set N, on which the

definition (2.4) of an analytic center of the optimality region is based, may be

empty. In this case, all optimal solutions were defined to be analytic centers.

Furthermore, as an example in Section 2 shows, the analytic center may be non-

unique even if N ^ 0 and the barrier perturbations L(x,r) are strictly convex.

The following proposition shows that these difficulties are avoided by the rank-

integrity assumption.

(4.8) The optimality region X* has a unique analytic center x* as defined

by the maximization problem (2.4). Moreover x* lies in the relative

interior relintX* of the optimality region, and gi(x*) > 0 for i E N.

18



Proof. The existence of at least one analytic center was shown earlier (2.5).

The proposition is obviously true if X* consists of a single point (even if N = 0 as

the relative interior of a single point consists of that point). We assume therefore

that X* has multiple points.

Next we show that X * is essentially bounded by the constraints gi(x) with i E N.

Using the notation “affine” to indicate the affine hull or span of a set, and selecting

a subset of the constraints by affixing the subscript X, we claim:

(4.9) X* = {z E affineX* : gN (x) > 0} (X* = affineX* if N = 0).

The inclusion X* C {z E affineX* : gN^x) > 0} is trivial. If X* = affineX* then

the converse inclusion is also trivial. In order to prove that converse inclusion in

general, select a point z E relintX*, and let x# E affineX* with x* $ X*. We
have to show, that x* violates some constraint: gl(x#) <0, i E N

.

Recall the definition (2.2) of the index set Z as characterizing the constraints in

gz{x) which are universally binding at optimality, that is, vanish for x E X*. Note

that since X* is convex, there exists 0 < 9 < 1 such that z + 0(z# — z) E X*
for 0 < 6 < 6 (see for instance Stoer and Witzgall [22], Lemma 3.2.9). For any

j E Z, the function g3 [x + 0(z# — z)] is a constant, namely vanishing, function of

6 on the interval [0,0]. By rank-integrity, that function vanishes for all values 9.

Thus gz{x*) — 0.

By the same token, the objective function f(x) is seen to be constant at its

optimal value, whence f(x*) = t*. Thus only the violation of some constraint,

gi(x*) < 0, prevents x

*

from being an optimal solution. Since gt (x) does not

vanish on affineX*, the index i is not in Z
,
and belongs therefore to its complement

N. This proves (4.9).

The following characterization of the relative interior of the optimality region is

simply a restatement of (4.9):

relintX* = {x E afTX* : gN^x) > 0} ^ 0.

It follows again from (2.5) that any analytic center is contained in relintX*.

We now proceed in analogy to the proof of (4.6), showing that the concave function

L*(x) = YheN ln&(z) has a unique maximum on relintX*. Assume to the contrary

that there are two different maxima, that is, two different analytic centers x* ^ x*

.

Then these points define a line segment S of positive length on which L*(x) is

constant. The individual summands lng2 (:r),z E X, must therefore be linear, and
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(4.7) implies that they are actually constant on the segment S. By rank-integrity,

this constant behavior extends to the entire line L D 5. In view of (4.9), this would

imply L C X*
,
violating the assumption that the optimality region is bounded.

5. Limits of Primal SUMT Trajectories

Trajectory points x = x(r
)
may be characterized as optimal solutions to an aux-

iliary programming problem,

(5.1) Problem B r : Maximize X)i€jvln[<7i(cc)] subject to

f(x ) < f[x{r)}

gi(x )
> 0 for i £ N

gi(x) > gi[x(r)\ for i £ Z.

Indeed, we will show that

(5.2) for any r > 0, x(r) is the unique optimal solution of the maximization

problem Br .

Proof. Let x be an arbitrary feasible solution of problem B r above. Note first that,

by the monotonicity of the logarithm function and the above conditions on cc,

ln(5i [x(r)]) - ^ln[Si (z)]

ieN ieN
m

= X^Ks.^O)]) - x;in[s,(z)] - 5Z(ln(5i [x(r)]) - Ms;(z)])
i=l 1=1 i£Z
m m

Z= 1 Z= 1

Next, because of the constraint f(x) < f[x(r)j and since r > 0,

m m

’•SMs.K 7’)]) - rSMs.O)]
2— 1 2= 1

= fix )
- r IZ ln [s-(x )]

~ flx (
r

)]
- r 2Z ln(ft[a: (r)I) + f[x i

r
)}
- f(x )

i=l i=l

> L{x,r) — L[x(r),r) > 0.
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This shows that, in order to maximize problem Br ,
it is necessary for x to minimize

the barrier perturbation L(x,r ). Proposition 5.2) follows, as x(r) is the only

minimizer by (4.6) and also clearly a feasible solution of problem B r .

We are now ready to prove the first of two theorems.

(5.3) Theorem 1: If the optimality region of a convex programming prob-

lem (1.1) is bounded, and if the Slater constraint qualification (1.4)

holds, then the limit of the primal trajectory x — x(r
) (1.8) for r —» 0

is characterized as the unique analytic center x* (2.4) of the optimal-

ity region X*
, if (i) the functions f(x), gi[x),i = l...m, in the convex

programming problem have rank-integrity (4.1); or if {j\)the optimality

region has interior points and the analytic center is unique.

Proof. The second part of the theorem is a corollary of the proposition (2.6).

As to the first part, there exists by (4.8) a unique analytic center x* £ X *

,

and Piv(^*) > 0 holds. Consider a sequence {ry }, j = 1,..., of positive barrier

parameters decreasing to 0. According to the basic fact (1.7), requiring only

continuity assumptions, the sequence of minimizers x[rj) has an accumulation

point x with

f[x(rj)} t* = f(x), x £ X *, gz (x) = 0.

Without loss of generality, we may assume that the accumulation point is actually

the limit

x(rf) —» x as j —> oo,

of that sequence, as otherwise we would select a suitable subsequence. We now
define

(5.4) x
(
rj) — x

(
rj) -f x* — x,

where x* is the unique analytic center. The idea of the proof is to utilize (5.2) by

establishing x(rj), for sufficiently large j ,
as a feasible solution of problem B rj ,

thus gaining an upper bound on corresponding values of its objective function.

First, note that x(rj) —> x* follows by definition (5.4). In view of g^(x*) > 0,

gN^i^j)] > 0 will hold for suitably large indices j

.

Next, we observe that the functions f(x), gt (x),i £ Z
,
are constant on the line

segment S = {x + 0(x* — x) : 0 < 9 < 1}. Indeed, the ends of S are in the convex
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optimality region X*, whence /(x) is constant on S, and gz{%) vanishes there.

By rank-integrity, the above functions are constant everywhere in the direction

x* — x. Since x(r) — x(rj) = x* — x by definition, it follows that there is constant

behavior in that direction, too:

(5.5) f[x(ri)} = f[x {
rj)}, 9z{i(r,)) = sz [x(r\,)].

These relations, together with the previous observation, ensure that x(r
3 )

is a

feasible solution for problem B ri . Since x(rj
)

is the optimal solution of that

problem,

£ In ?;[*(»•;)] < ^ ln Sl [i(r3 )],

zeN ieN

or, in terms of products of constraints,

n 9i[5 (
ri)]

ieN

< n siK’j)]-
ieN

In the limit j —> oo, the above relation becomes

n »(*•) ^ iiff*(5 )'

ieN ieN

Thus x is a maximizer of problem (2.4). By (4.8), x = x* . Hence every accumu-

lation point of the trajectory x = x(r) coincides with x*, proving Theorem 1.

6. Analytic Centers of the Dual Optimality Region

For differentiable convex programming problems, we will also investigate limits

of the dual trajectory (1.10) defined in the Introduction, and again we wish to

generalize results known to hold for linear programming problems.

In what follows, we will always assume that

(6.1) the primal trajectory x = x(r), r > 0 has a unique limit x* as r —» 0.

Note that the limit x* is not required to be the analytic center of the primal

optimality region. We then revisit the set (1.12)

U* = {ueRm : (x*, u) Wolfe dual optimal (1.11)}
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which plays the role of a dual optimality region. U* is convex. To see this, recall

that by definition of the Wolfe dualization, the vectors u E U* are the KKT
multipliers confirming the primal optimal solution x*. It is readily seen that if u1

and u 2
are both vectors of KKT multipliers for the same primal optimal solution

x*, then so is any convex combination Xu] -f pu2
,
A + /z = l,A,/z>0.

In order to dualize the concept of analytic center, we introduce the index sets

(6.2) V = {1 < i < m : u t = 0 for all u E U*}

and its complement

(6.3) M = {l<z<m: i V},

where m denotes the i— th component of vector u.

In view of the complementary slackness condition gi(x*)u t = 0 for KKT multipli-

ers, we can express

(6.4) U* = {u > 0 : V/(x*) — ^ X7gi(x*)v,i = 0, ut — 0 for i E V}.
ieM

We now define the “ analytic center of the dual optimality region” by the following

optimization problem:

(6.5) Maximize JJ U{ subject to u E U*.

ieM

For M = 0, we admit every point u* E U* as an analytic center. Again it will

be convenient to reformulate this definition in terms of logarithms. To this end

we have to ensure that the dual optimality region contains points for which those

logarithms are defined.

(6.6) There exists a point u E U* such that u l > 0 for all i E M. Conse-

quently

i^M => — 0 .

Proof. If M = 0, the above is trivial. Let then j be some index in M . If Uj = 0

for every u E U*
,
then j would by definition be in V. Thus there exists a point

uW E U* with u"P > 0. Define

u —
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where \M\ is the cardinality of M. Since U* is convex, u G U* and Ui > 0 for all

i G M

.

Also, the complementary slackness condition inherent in the definition of

U* holds and implies gi(x*)ui = 0 for all i. Since Ui > 0 for i G M, the second

part of the proposition follows. (Note that if x* is a “strict minimizer”
,
that is,

gt (x*) = 0 if and only if i £ Z, then (6.6) implies M C Z).

Because of (6.6), problem (6.5) can be reformulated as

(6.7) Maximize ui subject to

Ui > 0 for i G M and Ui = 0 for i G V.

Indeed, the objective function of problem (6.5) has a positive value for any u as

defined above. Hence its maximizer u*, - if it exists -, saisfies u* > 0 for all

i G M. The constraints u z > 0 in (6.5) may therefore be replaced by Ui > 0

without affecting the solution of the problem. The same is true if the objective

function is replaced by its logarithm.

Note that, since the sum of the logarithms lnu^ is a strictly concave function of

the variables Ui
:
i G M, and since the remaining variables are fixed at zero,

(6.8) if an analytic center u* of the dual optimality region U* exists, then

it is unique.

Again we conjecture that, for convex programming problems, dual analytic centers

characterize the limits of dual trajectories in much the same way as primal analytic

centers do for primal trajectories, and we are interested in finding conditions under

which that conjecture can be decided.

7. Examples and Counterexamples for the Dual Limit Con-
jecture

Returning to our first example (3.1), we recall that for the limit of the primal

trajectory x = x[r),

f
x(0) =

24

0
\
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and that, for r > 0

X\ (r) 3 + y/l9 Xi (r) —2 -f \/l9

2 — xx(r) — 2x 2 (r) — x3 (r) 5
5

4 -fi 3zi(r) — 4x 2 (r) — 2x3 (r) 15

These expressions define the dual trajectory u = u(r) and yield, in view of the

primal trajectory limit x(0), the following dual limits as the barrier parameter r

tends to zero:

ui(r)

u2 {r)

w3 (r*)

uA (r)

Us{r)

xi(r)

r

x 2 (r)

r

a^3 (r)

ui(0) =
— 1 + y/l9

u2 (
0

)
= 0,

w3 (0) = 0,

2 - Xi(r) - 2x 2 (r) - z 3 (r)

r

4 + 3xi(r) - 4z 2 (r) - 2z 3 (r)

u4 (0) =
8 + 719

ii 5 (0) =

15

7 — \^19

30

Because the primal programming problem is a linear programming problem, Wolfe

dualization (1-11) produces, independently of x, the familiar dual linear program-

ming problem:

Maximize — 2ti4 — 4it5 subject to

iii — u4 + 3u5 = o,

u2 — 2u4 — 4u$ = -2,

u3 — u4 — 2u5
= -1,

u > 0.

The optimality region of this linear programming problem is an edge characterized

by the additional constraints u 2 = u3 = 0. Thus V = {2,3}, and since the

equations in the above problem are equivalent to the gradient expression

V/(x*)
° j

/ 1 ^ (
~ i

\
3

\
-2 = 0 Ui + 1 —2 U4 + -4

-1 / V o } V -1 )
-2 /

Ui, u4 ,
u5 > 0,

it is verified that the optimal region in question is indeed U* as defined in (6.4).

The analytic center u* of that dual optimality region is then defined by the fol-
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lowing maximization program (compare (6.5))

(7.2)

Maximize uiu4u$ subject to

U\ — u4 -f 3u5 = 0,

u2 — 2u4 — 4ti5 = -2,

U3 — U4 — 2li5 = -1,

u2 = u3 = 0,

which can be treated as an unconstrained problem. For instance, expressing u3

and U4 by u 5 ,
the reader finds U1U4U5 = lOug — 7u\ + u$. Differentiating yields a

quadratic equation solved by = (7 — \/l9)/30 since Ui = 1 — bu 5 > 0 requires

U5 < 1/5. Thus u(0) = u* follows.

The limits u* admit several interpretations. First, they can serve as KKT multipli-

ers in the optimality criterion for the given programming problem (3.1). Second,

the subset u*,i € Z = {1,4,5}, of that full complement of KKT multipliers fur-

nishes KKT multipliers for the optimization problem (3.2).

For general convex programming problems, there are again exceptions. Consider

the problem

(7.3)

Minimize x 2 subject to

9l(z) — Xx > 0
,

9t(x) = X 2 > 0
,

93 (
2

)
= x 2 — x\ > 0

The optimality condition for the minimizer x = x(r) of a barrier perturbation

L(x,r) takes the form

The primal trajectory is therefore characterized by the equations

1 2cci

Xi x 2 - x\

r r
0, I

x 2 x 2 - x\
1 .

Note that because of x 2 {r) = 3xi (r)
2 the primal trajectory is tangential to the

constraint plane x 2 = 0 at the minimizer x* = (0, 0). It is easy to express the

trajectory coordinates in terms of r > 0:

T = 6xl
~5~ x\(t

)
= x 2 (r)

5T

y*
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As r tends to zero, we thus find the limits

ui(0) = 0, “2(0)
5’ x 2 {r) - Xl {rY “3(0)Xi (r) 2: 2 (

7’)

On the other hand, M = {2, 3}, V — {1}, and by (6.4)

U* = {u : u2 + u3 = 1, U\ — 0}.

Thus the optimization problem that characterizes the dual analytic center (6.5)

becomes

Maximize u2u3 subject to

u2 + u3 = 1, u2 ,u3 > 0.

The unique solution to this problem is, however, u

*

2 — 1/2 ^ ^ 2 (
0

)
and u\ =

1/2 ± u3 ( 0).

8. Characterizing Dual Trajectories

Portions of the dual trajectory u = u[r) can again be characterized as optimal

solutions of a family of auxiliary problems to be formulated below.

We will use the notation

Vg(x) = [Vsi(z), ...
,
Vgm (x)]

to indicate the n x m-matrix whose columns are the gradients of the constraint

functions. Index sets are again used in a self explanatory fashion for extracting

subvectors, such as

gz{x*), uM {r)
:

or submatrices such as

Vys(x).

Index sets are sometimes used as subscripts just to indicate the index range of

a vector as, for example, in the definition (8.1) below of the vector dc(r). Also,

reciprocals and logarithms of vectors such as in

1 /u(r) :
lnw(r)
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are to be understood as vectors of reciprocals and logarithms, respectively, of

components.

Let again x* denote the limit of the primal trajectory x = cc(r), which is assumed

to exist (6.1), and recall the index set M and its complement V (6.2). Split index

set M into two portions B and (7, B U C = M, B fl C = 0, such that VgB (x*) is

a basis of the matrix

Let the superscript indicate formation of the Penrose-Moore generalized in-

verse of a matrix. Because VgB (x*) has full column rank,

V<7B (s*)+ = [VSs (x*)
rV5B (x*)]-

1VSB (
a: *)

T
.

Since VgB (x*) is the limit of V^s[cc(r)] as r —> 0, the latter has full rank for

sufficiently small values of r > 0. For such values of r we define the vector

(8.1) dc (r
)
= —1-t - V?c [x(r)]

TV3B [i(r)]
+r^—

,

uc{r) uB [r)

which will set up a correction term for the problem below, where u(r) is the dual

trajectory as defined by (1.10) in the Introduction.

(8.2) Problem Qr : Maximize In ub H-lnuc — dc(r)
Tuc subject to

[uB ,uc ]
> 0,

V/[cc(r)] - VgB [x(r)]uB ~ Vgc [x(r)]uc - V

g

v [x(r)}uv (r) = 0,

where the index sets B
,
C partition the index set M

.

(8.3)

The vector \ub(t)^uc{t)] solves, for all sufficiently small r > 0, the

convex maximization problem Q r .

Proof. By its definition, the concatenated vector [us(r), uc(r)\ is positive and

satisfies the equation constraints of problem Qr . It is therefore feasible. For it to

be also optimal, it suffices that there exist a vector of Lagrange multipliers w(r)

such that

-1 /uB (r) \7gB [x(r)]
T

— l/uc (r) -f dc (r)
_

Vgc [x{r)}
T

_

(8.4)

Such a vector w(r) indeed exists:

w(r) = -X7gB [x{r)]
+T

w (r).

uB (r)'
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Several other important facts about the dual trajectory u — u(r) can be ascer-

tained under general conditions following McCormick [14].

(8.5) the dual trajectory u = u(r) remains bounded, as r > 0 tends to zero.

Proof. Let x* be the limit of the primal trajectory x(r) with respect to which the

dual trajectory is defined. Assume that u(r) is not bounded. Then there exists a

sequence Tj > 0, j = 1, ...
,
which converges to zero such that ||it(r

,

J-)||
—» oo. The

sequence of unit vectors

IKr
;)li

has a nonzero accumulation point u > 0, ||u|| = 1, which we may assume to be

a limit. (Otherwise we would select a suitable subsequence.) Passing to the limit

of the relation

II“0j)II

V/[x(r3 )] Yi V0i[®(»v)]
2= 1

ui(ri)

iK^)ir

we find by continuity

m
0 = ^Vgi{x*)vi.

i=

1

At least one component Vh is positive. Thus

-V5a(x*) =
i*h Vh

The ratios Vi/vh > 0 can be interpreted as KKT multipliers for the problem of

maximizing the function gh{x) subject to the remaining constraints gz (x) > 0, i ^
h. In addition, complementary slackness holds since gt (x*) > 0 implies for r —> 0

u.(r-)

5,[a:(r)]

and therefore v l = 0. We also note that for the same reason gh{x*) = 0. Since

all functions involved are concave, the KKT conditions suffice to ascertain that

gh{%*) = 0 is the maximum value of gh(p) > 0 subject to the remaining constraints

and, particularly, in the feasible region XF
. This contradicts the Slater constraint
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qualification (1.4).

Proposition (8.5) assures the existence of accumulation points u of u(r) as r > 0

tends to zero. Moreover, convergence holds if all these accumulation points can

be shown to be equal. The next proposition is a step in this direction.

(8.6) If u is an accumulation point of u(r) as r > 0 tends to zero, then

Ui = 0 for i G V,

where x* is the limit of x{r).

Proof. In the previous proof, gi(x*) > 0 was seen to imply Ui(r) —> 0. Hence

Hi = 0 if gi(x*) > 0, again establishing complementary slackness. Thus (x*,u) is

an optimal solution to the Wolfe dualization (1.11). The proposition then follows

by the definition (6.2) of the index set V.

If the vectors dc{r) and uy(r) were to converge to zero as x(r) converges to

x*

,

then the maximization problems Q r (8.2) would tend to the maximization

problem (6.5), which defines the analytic center of the dual optimality region.

This observation defines our approach to proving this analytic center to be the

limit of the dual trajectory. We also note, that

(8.7) the analytic center of the dual optimality region exists and is unique.

Proof. For existence, it has to be shown that the feasible region of the the maxi-

mization problem (6.5) is bounded, which follows by an argument analogous to the

proof of proposition (8.5). Uniqueness follows from the fact that the logarithmic

objective function is concave as stated earlier in (6.8).

9. Limits of Dual Trajectories

The characterization of the dual trajectory limit as an analytic center requires

additional assumptions such as the following.
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(9.1) (i) The constraint functions gi(x ), i = 1
,
...,m, are linear.

(ii) If x* is the 'primal trajectory limit, then

x(r) — x*

r
< constant

,

that is, the above vector remains bounded as r > 0 tends to zero.

Note that example (7.3) violates those assumptions. We are now able to state our

second theorem.

(9.2)

Theorem 2: If the primal trajectory x = x(r
)
converges to a unique

optimal solution x* E X*
,
and if one of the assumptions (9.1.i,ii) holds

then the dual trajectory u — u(r) converges to the analytic center u*

of the dual optimality region U*

.

The proof of this theorem will be based on the properties of the auxiliary maximiza-

tion problem Q r (8.2), which by (8.3) characterizes trajectory points u = u(r ).

Indeed, we will show that

(9.3)

Theorem 2 holds if

(i) the vector

dc(r) = — - Xgc [x(r)]
TVgB [x(r)]

+T -^—,
ucyr

) ub[t)

in problem Qr vanishes as r > 0 tends to zero

;

and (ii) for each accumulation point u of the dual trajectory u(r), the

components U{ with i E M are positive.

Proof. We first note that uy converges to zero by (8.6). Therefore we need to

concern ourselves only with

UM(r) = [uB {r\ uc {r )].

By (8.5), the trajectory u(r) possesses an accumulation point u, whence there

exists a sequence rj > 0, j = 1 , ...
,
such that

u(rj
)
—> u for j —> oo.

By its definition u(r
0 )
= [u

jb( 7’
j ), uc(rj ), uv{rj)\ satisfies

Vf[x {
rj)\ ~ TJgM[x(rjj\uM(rj)

- Xgvlxfrffuvirj) = 0.
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By the continuity of the gradients and again by (8.3), we find in the limit ry —» 0

that

V/(z*) - VgM{x*)uM = 0.

Thus um is a feasible point of problem (6.5) and therefore, a candidate for analytic

center. We proceed to show that um is an optimal point. This requires that there

exist a vector of Lagrange multipliers w* E JRT such that

(9.4)
- -z— = V#>M (x*)

T
w*.

um

Note that by (8.3) [u#(r), uc(r)\ = um(x) is the maximizer for problem Qr : its

optimality condition (8.4) is satisfied because for the vector of Lagrange multipliers

w(r) = -VgB [x(r)]
+T

uc [r)

the relation

-1/uB {r) VgB [x(r)]
T

— l/uc (r) + dc (r
)

_

Vgc[x(r)]T
_

holds. By hypotheses, w(rj
)
has the limit

uc

and by continuity um — (^b, uc) must satisfy (9.4). Thus um is an analytic center

of the dual optimality region U*. Since this holds for every accumulation point,

and since the analytic center of U* is unique by (8.7), the proposition follows.

We will now proceed with the

Proof of Theorem 2: Suppose (9.1.i) holds. Then, denoting by g[x) the m vector

of constraints gi[x ),

g(x) = Atx - 5, Vg(x) = A
,

for some m vector b and some n x m matrix A. In what follows, index sets used

as subscripts again denote corresponding subvectors and submatrices.

In particular, the submatrix AB has full rank so that A^AB = I for its Moore-

Penrose pseudo inverse Aq = (A^Ag) -1
A^. By the choice of submatrix AB ,

the
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columns of submatrix Ac are linear combinations of the columns of AB : Ac =

AbAqAc- By (6.6) gM {x*) = 0. Thus Aj^x* = bM and, in particular,

(9.5) bc = ATcx' = AtcA+b
tAtbx * = ATcA%

T
bB .

Now

dc (r) = —b- - V5c [a:(r-)]
T
V5B[r)]

+T—

—

uc [r) uB (r)

= ^
{gc[x(r)\ - Vgc[x{r)]

T
X7

g

B [x(r)]
+T

gB [x(r)]}

= ~ (l^cx (
r

)
~ bc ]

- AcA%T [A%x(r) - bB fj

= -i(bc -AT
cA%

T
bB

)

= 0

for all r > 0 by (9.5). This establishes condition (9.3.i). To verify condition

(9.3-ii), choose an accumulation point u and a sequence rj > 0, j = 1,..., which

converges to zero such that the resulting sequence u(rj) converges to u. The limit

x* of the primal trajectory x{r) is an optimal solution x* E X*. Hence there

exists, by (6.6), a point il E U* such that um > 0 and uy = 0 hold in conjunction

with gM^x*) = 0. Since

V/(z*) - Xg(x*)u = V/(z*) - XgMuM = V/(z*) - AMuM = 0, uM > 0,

the point um is feasible for problem (6.5) and is thus a potential analytic center.

Define

wm(tj) = um(j’j) + um ~ um-

Since V/(z*) = VgM(x*)TUM — AJ^um holds for both um and the vector

um — um{tj) satisfies

^flx (
rj)]

~ VgM[x{rj)]uM ~ Vgv[x(rj)]uv (rj)

= V/[x(rj)] - Amum ~ Avuv (tj) = 0.

um{t°j) converges to um > 0. Hence we may assume UM{rj) > 0 (or otherwise

select a suitable subsequence). um{x0 )
is therefore a feasible solution to problem

Q Tj . If the limit of any component of um^tj) equals zero, the objective function

values of u^fq) for problems Q rj will go to infinity, and um(x) will eventually
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produce smaller values than um(xj), contradicting the assumption that the latter

is a minimizer. Thus condition (9.3.ii) thus holds also, and Theorem 2 follows

under assumption (9.1.i). We remark that the above argument could have been

based on a general result of Witzgall, Boggs, and Domich [23]: the analytic centers

of linear constraint systems are continuous with respect to changes of their right

hand sides.

Suppose assumption (9.1-ii) holds, and recall that pm(z*) = 0 by (6.6). For r > 0

by Taylor’s Theorem:

(9.6)
1

1 =
uM {r)

where x(r) is a point on the line segment [sc*, sc(r*)]. We will first show that the

vector dc(r) in that problem converges to zero as required by condition (9.3.ii).

By (9.6), and since B U C is a partition of M, vector dc{r) is of the form

(9.7) dc {r) = Tc(r)— —
r

with the matrix Dc(r) given by

Dc (r) = Vgc [x(r)]
T - Vgc [x(r)]

TVgB [x(r)}
+T

gB [x(r)]
T

Here r > 0 must be sufficiently small for the matrix VgB [r(r)\ to have full rank. It

then follows that its pseudoinverse converges to gB (x*)+ . Clearly, x(r) converges

to x* - together with x{x) - as r > 0 tends to zero. It follows by continuity that

Dc(r) - D'c = Vgc(x-)
T
{I - VffB (x*)

+rVSB (s*)].

Recall that the columns of Vgc(x*) lie in the column space of X7gB (x*):

Vgc {x*) = VgB (x*)VgB {x*)+Vgc {x*).

Hence

D'c = Vgc(,x')
1 VgB (x')

+T
X7gB (x*)

T I - VSB (x*)
+ 'rVSs (a: *)
+T

'

= 0 .

Thus assumption (9.1.ii) implies dc(r )
—> 0 in view of (9.7).

To prove the remaining condition (9.3.ii), we assume again that accumulation

point u is the limit of u(rj ), Tj >0, j — 1, ...
,
as r

3
—> 0. Since

xivj) — x*

34



remains bounded for rj —> 0 by (9.1.ii), we may assume that it, too, converges (or

else select a suitable subsequence of the above). By (9.6),

1 5Af[x(r3 )]

Mh)
=

h
= 9M[il)] —

—

•

The reciprocal of um(t) converges since VgM l^{rj) converges by continuity for

j —> oo. But this is possible only if the limit % is positive. The conditions of

(9.3) are thus met, and Theorem 2 is proved. (Note that (9.1.ii) implies M D Z.

If, furthermore, the primal trajectory limit x

*

is a strict minimizer, that is, if

gi(x*) = 0 only if i £ Z, then M — Z by (6.6).)
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